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Modelling the persistence of Covid-19 positivity rate in Italy

Antonio Naimoli

Università di Salerno, Dipartimento di Scienze Economiche e Statistiche (DISES)

Abstract

The current Covid-19 pandemic is severely affecting public health and global economies. In
this context, accurately predicting its evolution is essential for planning and providing resources
effectively. This paper aims at capturing the dynamics of the positivity rate (PPR) of the novel
coronavirus using the Heterogeneous Autoregressive (HAR) model. The use of this model is
motivated by two main empirical features arising from the analysis of PPR time series: the
changing long-run level and the persistent autocorrelation structure. Compared to the most
frequently used Autoregressive Integrated Moving Average (ARIMA) models, the HAR is able to
reproduce the strong persistence of the data by using components aggregated at different interval
sizes, remaining parsimonious and easy to estimate. The relative merits of the proposed approach
are assessed by performing a forecasting study on the Italian dataset. As a robustness check, the
analysis of the positivity rate is also conducted by considering the case of the United States. The
ability of the HAR-type models to predict the PPR at different horizons is evaluated through
several loss functions, comparing the results with those generated by ARIMA models. The model
confidence set is used to test the significance of differences in the predictive performances of the
models under analysis. Our findings suggest that HAR-type models significantly outperform
ARIMA specifications in terms of forecasting accuracy. We also find that the PPR could represent
an important metric for monitoring the evolution of hospitalizations, as the peak of patients in
intensive care units occurs within 12-16 days after the peak in the positivity rate. This can help
governments in planning socio-economic and health policies in advance.

Keywords: HAR, ARIMA, Covid-19, positivity rate, forecasting.
JEL Codes: C58, C22, C53

1. Introduction

Following the China’s report (31 December 2019) of a cluster of cases of pneumonia of unknown
aetiology (later identified as a new coronavirus Sars-CoV-2) in the city of Wuhan, the World
Health Organisation (WHO) declared on 30 January 2020 the novel coronavirus outbreak (Covid-
19) a Public Health Emergency of International Concern. On 11 March 2020, the Covid-19
outbreak was identified by the WHO as a global pandemic. As of 01 December 2020, Covid-19 has
infected more than 64.06 million people with 1.54 million global deaths since its emergence. One
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year later, 01 December 2021, the number of confirmed cases has risen to 263.52 million, while the
number of confirmed deaths has jumped to 5.23 million1.

The general understanding of the evolution of the Covid-19 pandemic by researchers and
policymakers is often based on data on confirmed cases and deaths. These are the variables that
guide public policy in both the introduction and relaxation of non-pharmaceutical interventions,
such as masking, social distancing, and other crucial public health measures. However, looking
only at the number of cases and deaths can lead to a highly misleading picture of the true scale and
spread of the Covid-19 pandemic. These data can only be meaningfully interpreted in conjunction
with an accurate understanding of the extent and allocation of virus testing (Hasell et al., 2020).
Rapid, reliable, and accurate testing to confirm cases is a prerequisite for successful contact
tracing because, without it, infected individuals may remain unidentified and continue to act
as sources that support community transmission. Control of the epidemic can be hampered when
the percentage of asymptomatic cases is high as in the case of Covid-19 (Oran and Topol, 2020).
Thus, when the virus spreads, the only way to identify all infected individuals would be through a
universal testing program. Therefore, test positivity is a metric of potential relevance in situations
where the percentage of asymptomatic cases is particularly high (Fasina et al., 2021). In addition,
according to World Health Organization (2020), before governments can ease restrictions or begin
to reopen, the positivity rate (or percent-positive rate) should be 5% or less for at least 14 days.
Accordingly, the positivity rate (PPR) is a critical measure as it provides an indication of how
prevalent the infection is in the testing area and whether testing levels are keeping up with disease
transmission levels.

The Covid-19 pandemic, and the associated stringent preventive measures taken by
governments in response to the rapid growth in infections and deaths, have led to unprecedented
socio-economic challenges around the world. For example, analyzing the economic connection
with Covid-19, Coccia (2021) pointed out that the pandemic and containment policies produced
negative effects on economic growth. As a result, the pandemic shocked the global economy,
from financial markets where asset prices declined and volatility increased characterizing both
the impact and future uncertainty of the pandemic (Baker et al., 2020; Chowdhury et al., 2021;
Klose and Tillmann, 2021; Zhang et al., 2020), to the impacts on the supply chain (Gunessee
and Subramanian, 2020; Ivanov and Dolgui, 2020; Paul and Chowdhury, 2020a). Italy was the
first Western country to experience a Covid-19 emergency with a spiral of infections that placed
the country at the top of the international rankings (surpassing China on 19 March 2020 with
41,035 confirmed cases and 3,405 deaths2) and consequently faced large-scale health and socio-
economic challenges (Berardi et al., 2020). Several hypotheses have been advanced to explain
the rapid spread of the virus within the country, including various geographical, environmental,
and socio-economic similarities between Hubei Province in China (where the epidemic broke
out) and Northern Italy (Murgante et al., 2020). Several studies have shown that airborne
transmission is the dominant route of spread of Covid-19 disease, i.e., the main human-to-human
diffusion mechanism (Jayaweera et al., 2020). However, other variables have been identified as
potentially contributing to the spread of Covid-19, such as demographic factors (Bertuzzo et al.,
2020; Copiello and Grillenzoni, 2020; Diao et al., 2021), environmental and climatic factors, (Bashir
et al., 2020; Eslami and Jalili, 2020; Srivastava, 2020) air pollution (Copat et al., 2020; Fattorini and
Regoli, 2020; Murgante et al., 2020) and social interactions associated with the mobility of people

1Johns Hopkins University & Medicine - https://coronavirus.jhu.edu/
2Italian Ministry of Health - Daily Bulletin Covid-19 Outbreak in Italy 19/03/2020
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and economic activities (Bloise and Tancioni, 2021; Bontempi and Coccia, 2021; Bontempi et al.,
2021; Ehlert, 2021). Along these lines, Panarello and Tassinari (2021), making use of a containment
index, sanction data, and Google’s movement trends across Italian provinces, provided evidence
of a deterrent effect on mobility given by the increase in sanction rate and positivity rate among
the population.

Overall, the spread of the novel coronavirus has severely affected the integrity of the
global economic, social, financial, and behavioral system. Analyzing the relationships between
epidemiological and economic models, Verikios (2020) pointed out that because of the greater
uncertainty surrounding its nature and the stringent preventive measures taken by governments,
Covid-19 is likely to be of longer duration and consequently more severe in its economic effects
than previous pandemics. The current outbreak has turned out to be the first extraordinary
long-term disruption of the global supply chain (Ivanov, 2020; Ivanov and Dolgui, 2020; Koonin,
2020), and differently from the past, all supply chain players have been severely affected by this
pandemic (Chowdhury et al., 2020; Paul and Chowdhury, 2020a; Gunessee and Subramanian,
2020). For example, for some supply chains, demand for necessary items such as personal
protective equipment and beauty and personal care products has increased (Ivanov, 2020;
Chowdhury et al., 2020; Paul and Chowdhury, 2020a). Conversely, for other industries, such
as transportation and manufacturing, demand and supply have decreased dramatically, causing
a halt in production (Gray, 2020; Majumdar et al., 2020). In response to the current vulnerability of
the entire supply system, several resilience strategies have been suggested to mitigate the impacts
of Covid-19 and to recover from the current pandemic (see, e.g. Paul and Chowdhury, 2020a; Taqi
et al., 2020; De Silva et al., 2021; Lozano-Diez et al., 2020; Paul and Chowdhury, 2020b; Deaton
and Deaton, 2020; Ivanov and Das, 2020; Remko, 2020, among others). The rapid spread of
Covid-19 has also significantly affected sustainability, raising several environmental, economic,
and social issues (Dente and Hashimoto, 2020; van Barneveld et al., 2020; Sarkis, 2020; Sharma
et al., 2020; Queiroz et al., 2020; Rendana et al., 2021; Ibn-Mohammed et al., 2021). However, in this
negative scenario, it is worth highlighting some positive aspects mainly related to environmental
sustainability: improved air quality, low carbon dioxide and greenhouse gas emissions, decreased
energy use and environmental pollution (Dente and Hashimoto, 2020; Ibn-Mohammed et al.,
2021; van Barneveld et al., 2020; Sarkis et al., 2020).

In this context, it is necessary to formulate functional planning for the health infrastructure
and services in order to curb the spreading of the Covid-19 pandemic. An accurate forecast of
the epidemiological trends is essential for health system management and government reform
planning. Therefore, to support non-pharmaceutical intervention policies during the Covid-19
outbreak, several models have been proposed for fitting and forecasting the epidemic evolution
(see, e.g., Albani et al., 2021; Giordano et al., 2020; Sun et al., 2020).

In the past, the Autoregressive Integrated Moving Average (ARIMA) model has been widely
employed for forecasting time series of epidemic diseases. For example, ARIMA models have
been successfully applied to estimate the incidence of Severe Acute Respiratory Syndrome (SARS)
(Earnest et al., 2005), malaria (Gaudart et al., 2009), tuberculosis (Zheng et al., 2015), influenza
viruses (He and Tao, 2018) and brucellosis (Cao et al., 2020). This class of models is also being used
to estimate and predict the evolution of the ongoing pandemic. Benvenuto et al. (2020) performed
ARIMA model on world data to predict the epidemiological trend of the prevalence and incidence
of Covid-2019. In Singh et al. (2020) it was used to predict confirmed cases, deaths, and recoveries
for the top 15 countries. Sahai et al. (2020) employed ARIMA models on the daily time series of
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total infected cases for US, Brazil, India, Russia and Spain for forecasting the spread of Covid-19.
Monllor et al. (2020) applied it to analyze the series of infected persons in China, Italy and Spain,
finding a common pattern of disease spread. Ceylan (2020) used ARIMA specifications to predict
the epidemiological trend of total confirmed cases of Covid-19 in Italy, Spain, and France.

Most of these papers that rely on ARIMA specifications, model the dynamics of the total
number of infected cases, deaths or recoveries. To support policymakers in defining guidelines for
the management of health systems, as well as to facilitate the development of plans for economic
recovery, this paper investigates the dynamics of the Covid-19 positivity rate, defined as the
number of new positive cases divided by the number of total tests. Our empirical analysis reveals
that the positivity rate is characterized by a slowly moving long-run level and a highly persistent
autocorrelation structure.

ARMA models are not well suited to model the long-term behavior of time series. Long
memory processes are characterized by a high-order correlation structure indicating persistent
dependence between distant observations, implying that the effect of shocks takes a very long
time to disappear. The conventional ARMA process is often referred to as a short memory
process as it is unable to capture the dynamics of a long memory series. On the other hand,
the Autoregressive Fractionally Integrated Moving Average (ARFIMA) process, allowing the
order of integration of a series to take on fractional values, provides a useful tool for modelling
and forecasting time series with long memory properties (Baillie, 1996). However, being a
fractional integration model, the ARFIMA is not trivial to estimate and lacks a clear economic
interpretation. This leads us to introduce a new approach to directly model and forecast
the Covid-19 positivity rate. Namely, the time series behavior of the PPR can be adequately
captured by the Heterogeneous Autoregressive (HAR) model by Corsi (2009). In this context,
the HAR model represents an attractive alternative because of its computational simplicity, ease
of interpretation, and remarkable forecasting performance.

Although formally not belonging to the class of long memory models, the HAR model is able
to closely mimic the observed long memory behavior by using variables aggregated at different
interval sizes. Therefore, differently from the standard ARIMA specifications, HAR-type models
are based on an additive cascade of components, from high-frequencies to low-frequencies,
allowing to capture both the high degree of persistence (through the long-term component) and
short-term dynamics (through the short- and medium-term components) that characterize the
PPR behavior. Along with conventional HAR-type models, we also consider the possibility of
selecting relevant lagged components through flexible HAR specifications based on the use of the
least absolute shrinkage and selection operator (lasso) (Tibshirani, 1996) and the adaptive lasso
(Zou, 2006).

The aim of this paper is to assess the usefulness of the HAR as a new modelling approach to
predict the spread of the Covid-19 by capturing the short-, medium- and long-term dynamics
of the PPR. Accurate short- and long-term predictions of the PPR can be essential both for
developing non-pharmaceutical strategic planning by policymakers to address the current health
emergency and for shaping new policies to overcome the severe negative impacts experienced
by businesses and supply chains because of the pandemic. The positivity rate measures both the
severity of the outbreak and the limitations of testing. That is, the PPR is a useful measure of
whether sufficient testing has been done and what the current level of SARS-CoV-2 transmission
is in the community. Therefore, this approach could provide a useful tool for both monitoring
the spread of the virus and guiding policymakers to undertake actions to curb the spread of the
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disease. HAR-type models prove to be particularly useful as, on the one hand, they are able
to adequately predict the short-, medium- and long-term trend of the positivity rate, and, on
the other hand, the lasso-based HAR specifications are completely data-driven, thus reducing
uncertainty in the choice of predictor lags. Therefore, the proposed approach provides a reliable
tool that simplifies the decision-making process by moving towards a single data-driven direction.

The profitability of the HAR approach in forecasting the Covid-19 positivity rate is evaluated
through an application on the Italian dataset, as it was the first European country to be seriously
affected by the pandemic. On 30 March 2020, more than 101 thousand people were positive to
Covid-193. The empirical application shows that HAR-type models outperform the most popular
ARIMA models revealing that the improvements are especially significant for longer forecast
horizons as detected by the model confidence set (MCS) (Hansen et al., 2011). These findings
are also confirmed by analyzing the positivity rate of the United States, which was considered as
a reference country to pursue a robustness check of the proposed approach. Finally, the positivity
rate exhibits predictive ability with respect to hospitalizations.

The remainder of the paper is organized as follows. Section 2 presents the Heterogeneous
Autoregressive model and its lasso-based extensions. Section 3 describes the data and the main
non-pharmaceutical measures adopted by the Italian government. Section 4 illustrates the results
of the empirical study and robustness checks. Section 5 presents a broader discussion of the
positivity rate along with some limitations and caveats. Finally, Section 6 summarizes the findings
with concluding remarks.

2. Heterogeneous autoregressive models

Inspired by the Heterogeneous Market Hypothesis (Müller et al., 1993) and the asymmetric
propagation of volatility between long-term and short-term horizons, Corsi (2009) proposed the
HAR model to parsimoniously capture the strong persistence typically observed in Realized
Volatility (RV) (Andersen and Bollerslev, 1998) by the sum of lagged RV components aggregated
over different interval sizes.

The HAR model is commonly used in modelling the dynamics of financial volatility as it is able
to reproduce the main stylized facts of financial data such as the long memory and asymmetric
propagation of volatility over time. In most empirical applications, the HAR model is specified as
an additive cascade of three volatility components aggregated over different time intervals, that
is daily, weekly and monthly, which implies a fixed (1,5,22) lag structure. However, the structure
(1,5,22) may not fully reflect the characteristics of the data. Thus, determining the optimal lag
structure of the HAR could significantly improve the predictive ability of the model. In this
direction, Audrino and Knaus (2016) showed that the HAR-implied lag structure can be recovered
asymptotically by the lasso only if the HAR is the underlying data generating process (DGP).
On the other hand, differently from Audrino and Knaus (2016) who employed the lasso on the
Autoregressive (AR) framework, Audrino et al. (2019) referred to the adaptive lasso to investigate
whether the lag structure implied by the HAR can be identified. However, their results highlight
the difficulty of outperforming the forecast performance of the standard HAR model based on the
daily, weekly and monthly components.

The HAR model can be easily estimated by ordinary least squares (OLS), showing remarkable
good volatility forecasting performance. Therefore, it is widely used to model the dynamics of

3Italian Ministry of Health - Daily Bulletin Covid-19 Outbreak in Italy 30/03/2020
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RV, but it has never been used to predict the evolution of pandemics. In light of its inherent
characteristics, to capture the slowly decaying autocorrelation structure (also known as long
memory) of the Covid-19 positivity rate series, we propose to apply the HAR modelling approach.

Let PPRt be the positivity rate at time t. The HAR model for the h-step-ahead daily PPRt
can be specified as

PPRt+h = β0 + β1PPR
(1)
t + β2PPR

(7)
t + β3PPR

(28)
t + εt+h, (1)

where PPR(k)
t = k−1

∑k
j=1 PPRt−j is the k-period average of daily PPR and εt is a zero mean

innovation.
This specification, substantially, states that tomorrow’s PPR is a weighted sum of daily, weekly

and monthly averages of PPRs that can be characterized by different dynamics of virus infection
and transmission over time. For example, to take into account the different periods of time
between infection and development of clinical symptoms as well as the transmission periods,
the model in Equation 1 can be further extended as

PPRt+h = β0 + β1PPR
(1)
t + β2PPR

(7)
t + β3PPR

(14)
t + β4PPR

(21)
t + β5PPR

(28)
t + εt+h. (2)

Thus, the HAR model is parsimonious, it allows to approximate long memory in a very simple
way and it can be consistently estimated by OLS.

In this context, it becomes crucial to define the lag structure and the maximum order of the
model. It is worth noting that the HAR can be represented as a constrained AR(p) model (Corsi,
2009). Considering the HAR process introduced in Equation 1, we can write it as a restricted
AR(28) process, namely

PPRt+1 = φ0 +
28∑
i=1

φiPPR
(1)
t−i+1 + εt+1 (3)

where

φi =


β1 + 1

7β2 + 1
28β3 for i = 1

1
7β2 + 1

28β3 for i = 2, . . . , 7
1
28β3 for i = 8, . . . , 28

(4)

In contrast to the fixed daily-weekly-monthly time scale, extensions of the HAR model have
been proposed to allow for potentially different predictive information arising from a different
lag structure. In this direction, to investigate whether a more general lag structure provides more
accurate predictions than the fixed (1,5,22) lag index, Audrino and Knaus (2016) and Audrino
et al. (2019) compared the standard HAR model to a lasso-based method.

Let the daily PPRt be denoted by xt, with (xt, . . . , xt−p+1)
′ the predictor variables. Then, the

lasso4 (Tibshirani, 1996) estimator of the AR(p) model

xt+1 = c+

p∑
i=1

φixt−i+1 + εt+1

4The lasso (least absolute shrinkage and selection operator) method aims to select a subset of important covariates
by shrinking the coefficients of redundant ones towards zero.
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is obtained as

φlasso = argmin
φ


T∑
t=p

(
xt+1 −

p∑
i=1

φixt−i+1

)2

+ λ

p∑
i=1

|φi|

 (5)

where λ ≥ 0 is the tuning parameter which controls the strictness of the penalty term, with λ = 0
leading to the OLS estimator. The solution for the constant c is ĉ = x̄, that is zero for demeaned
data.

It has been shown that the lasso suffers from some drawbacks due to the lack of oracle
properties. On the other hand, the adaptive lasso (Zou, 2006) estimator fulfils the oracle property
in the sense introduced by Fan and Li (2001), as it allows asymptotically consistent and efficient
variables selection and provides asymptotically unbiased and normally distributed estimates of
the non-zero coefficients.

The adaptive lasso estimator is given by

φalasso = argmin
φ


T∑
t=p

(
xt+1 −

p∑
i=1

φixt−i+1

)2

+ λ

p∑
i=1

λi|φi|

 (6)

where the weights λi can be computed as the inverse of the absolute value of the corresponding
preliminary ridge regression or OLS estimator. The ordinary lasso is obtained as a special case for
λi = 1,∀i = 1, . . . , p.

The K-fold cross-validation is used to determine the optimal tuning parameter λ. Specifically,
the data are randomly divided into K groups (G1, ..., GK) and for each group the mean squared
error is estimated on the validation set by

ek(λ) =
∑
t∈Gk

(xt − x̂t)2. (7)

For each tuning parameter value, the average error over all folds is computed as

CV (λ) =
1

T

K∑
k=1

ek(λ) =
1

T

K∑
k=1

∑
t∈Gk

(xt − x̂t)2 (8)

and thus the optimal λ is chosen by minimizing the CV (λ) function, that is

λ̂CV = argmin
λ

CV (λ). (9)

The Flexible HAR (FHAR) of Audrino et al. (2019) can be estimated by applying the adaptive
lasso procedure to select the active terms to be included in the model considering the following
equation

PPRt+1 = β0 +

p∑
i=1

βi

 i∑
j=1

1

i
PPR

(1)
t−j+1

+ εt+1. (10)

Motivated by these theoretical developments, this paper aims to apply the HAR and its lasso
extensions to Covid-19 data to predict its spread and provide a good alternative to other models
that have been proposed to study the dynamics of the ongoing pandemic.
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3. Data description and management of the 2020 Covid-19 pandemic in Italy

The data used in this paper refer to the daily number of confirmed Covid-19 cases and daily
total tests in Italy, between 24 February and 20 December 2020 for a total of 301 days. The data
have been downloaded from the official Civil Protection Department website5 - Presidency of the
Council of Ministers.

Table 1: Summary statistics

Min. 1st Qu. Median Mean 3rd Qu. Max. Std.Dev.

Daily new positive cases 78 384 1,501 6,498 5,560 40,902 10,143.22
Daily tests 964 41,867 61,725 84,259 108,019 254,908 62,825.32
Daily positivity rate 0.23 0.90 2.39 6.69 11.61 46.21 7.61

Table 1 provides summary statistics for the new positive cases, number of tests (swabs)
performed and PPR at a daily level in Italy for the full sample period. The occurrence of new
cases of a disease developing in a population over a period of time, also known as “incidence” in
epidemiology, can be used to map the frequency with which Covid-19 develops in a community6.
These peaked at 40,902 during the second wave (October - November 2020) along with the number
of tests performed in a single day, 254,908. On the other hand, the positivity rate touched 46.21%
during the first wave (February - March 2020), reaching its minimum of 0.23% in June during
the Phase 2, characterized by an easing of previously adopted restrictive measures. A possible
explanation for the high positivity rate in the very early phase of the epidemic is that on 25
February 2020, the Italian Ministry of Health issued more stringent testing policies. That is, testing
was prioritized for patients with more severe clinical symptoms who were suspected of having
Covid-19 and required hospitalization. Consequently, testing was limited for people who were
asymptomatic or had mild symptoms. This strategy inevitably led to a high percentage of positive
tests (Onder et al., 2020).

Figure 1 displays the time series of the daily positivity rate given by (new positive cases/total
tests)×100 for Italy. It also shows that the PPR exhibits persistence, i.e. large changes in the
positivity rate are often followed by other large changes and small changes are often followed
by small changes. The presence of long memory can be identified by a data-driven empirical
approach in terms of the persistence of observed autocorrelations. This feature is highlighted
in Figure 2 which displays the daily and weekly autocorrelation functions for the PPR up to
lag 40. The correlograms show that the autocorrelations exhibit a clear pattern of slow decay
and persistence. In particular, the sample autocorrelations reveal the presence of a hyperbolic
decay rate, which is much slower than the usual geometric rate associated with stationary ARMA
processes. Also, it was not possible to reject the null hypothesis of a unit root at the 5% level using

5http://www.protezionecivile.gov.it/home
6Incidence differs from prevalence because incidence is limited only to new cases during a specified time period,

whereas prevalence includes all cases (both new and existing) in the population either at a specific point in time
(the point prevalence) or over a specified time period (the period prevalence). The incidence can be measured as
a proportion or as a rate. For the incidence proportion, the numerator is the number of new cases of a disease or
condition that occur during a given time period, while the denominator is the total population at risk during the
defined study period. For the incidence rate, the numerator is still the number of new cases observed over a given
period of time, but the denominator is now the sum of the person-time at risk (for further details see, e.g., Porta, 2014).
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the Augmented Dickey-Fuller test. However, the classical trend stationary I(0) and unit roots I(1)
representations may be too restrictive with respect to the low-frequency dynamics of the series.
This compelling evidence of long memory, i.e. the historical PPRs have a persistent impact on the
future PPR, suggests that the Covid-19 positivity rate can be adequately modelled through HAR
specifications.

Figure 1: Positivity rate for Italy
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Time series of daily positivity rate for Italy. Sample period: 24 February 2020 – 20 December 2020.

To better understand the dynamics of the contagion and the importance of PPR behavior in
guiding decisions about reopening schools and businesses, we briefly report the main measures
taken by the Italian government to contain the epidemic7. For a more extensive analysis of policy
interventions implemented by the Italian government and their impact on health and non-health
outcomes, see Berardi et al. (2020).

The Italian government confirmed the first cases of the disease in the country on 30 January
2020, when the novel coronavirus was detected in two Chinese tourists while visiting Italy. On
request of the Italian Health Authorities, all flights to/from People’s Republic of China (PRC)
including Hong Kong, Macao and Tapei were suspended. Once the first internal outbreak was
discovered, one of the first measures adopted was the quarantine of 11 municipalities in Northern
Italy located in Lombardy and Veneto.

On 23 February, the Council of Ministers decreed the total closure of the municipalities with
active outbreaks. This is also confirmed by Figure 1, that shows how the positivity rate continues
to grow after 23 February, reaching its maximum of 46.21% on 09 March. During this time, there
was a succession of different measures aimed at containing the epidemic, and on 09 March, the
so-called Phase 1, began with the country being locked down until 03 May 2020. Italy was the first
country to implement a national quarantine due to the 2020 coronavirus outbreak. As a result,

7http://www.governo.it/it/coronavirus-misure-del-governo
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Figure 2: Autocorrelation function for the daily (left) and weekly (right) positivity rate for Italy
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the positive percentage rate began to slowly decline towards zero and on 26 April, the then-Prime
Minister Giuseppe Conte announced the so-called Phase 2, that would start from 04 May. Phase 2
was characterized by a gradual relaxation of previous containment measures. Italy therefore tried
to restart by reopening bars, restaurants and shops. All while observing the new safety rules,
ranging from social distancing to the use of face masks. As it can clearly be seen from Figure 1,
the infection curve tends to flatten out and so from 15 June (end of Phase 2) to 07 October, Phase 3
of coexistence with Covid-19 began.

Following the rise of the epidemic curve in the autumn, renewed restrictions were
progressively introduced, mainly concerning commercial and private activities rather than
restricting movement. This led to the second wave of the pandemic, with the positivity rate rising
and new restrictive measures being introduced between 08 October and 05 November. Starting
from 03 November 2020, the Regions and Autonomous Provinces of Trento and Bolzano have
been classified into three areas, namely red, orange and yellow, according to the degree of risk, for
which specific restrictive measures were envisaged. This classification is based on the ordinances
issued by the Ministry of Health.

To mitigate the effects of Covid-19 and make appropriate health, economic and social system
decisions, it is crucial to understand the pandemic evolution. The effective reproductive number
(Rt) is a parameter that has been widely used to measure the transmissibility of the ongoing
epidemic infection. Therefore, as a further tool to understand the actions enacted by the Italian
government to counter the spread of the coronavirus, the Rt is also estimated. The Rt is a
fundamental epidemiological parameter that characterizes the temporal dynamics of infectious
disease as measuring the average number of secondary cases caused by an infected individual in
a population composed of both susceptible and non-susceptible individuals (Wallinga and Teunis,
2004; Cori et al., 2013; Delamater et al., 2019).

The Covid-19 Rt has been estimated by the Cori et al. (2013) approach, using the EpiEstim
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Figure 3: Effective reproductive number for Italy

0

1

2

3

4

03−2020 04−2020 05−2020 06−2020 07−2020 08−2020 09−2020 10−2020 11−2020 12−2020 01−2021
Time

E
ffe

ct
iv

e 
re

pr
od

uc
tiv

e 
nu

m
be

r

Mean

95%CrI

Effective reproductive number for Italy

Estimates of the weekly effective reproductive number (Rt, solid line) and 95% credible interval (grey area) during the
coronavirus disease 2019 outbreak in Italy. Sample period: 24 February 2020 – 20 December 2020.

package (Cori, 2020) and R Core Team (2020) software. To explicitly take into account the
uncertainty in the serial interval (SI) distribution, the mean and standard deviation of the SI
(time interval between the onset of symptoms in the primary and secondary cases) are allowed to
vary according to truncated normal distributions, employing parameters estimated from existing
studies (see, Liu et al. (2020); Nishiura et al. (2020) and Du et al. (2020), among others). Therefore,
theRt was estimated on sliding weekly windows, with values drawn from a Gamma distribution,
with the mean and variance sampled from 1,000 truncated normal distributions for which we
used an average mean serial interval of 4.8 days (sd = 2.3, min = 3.8, max = 5.8), and an average
standard deviation of 2.3 days (sd = 2.3, min = 1.3, max = 3.3).

The resulting weekly Rt series is reported in Figure 3. It clearly shows the peak of
transmissibility during the first wave (February-March 2020), while between April and around
mid-June the Rt index remains below one, indicating that the spread of infection is decreasing.
However, with the start of Phase 3 (15 June), a slight but steady increase in the national
transmission index was noted, reaching a summer peak in the period 15 August - 31 August
where Rt reached 1.59 (95% CI: 1.41 - 1.75) with an incidence calculated as daily cases. It is worth
noting that the estimates have a large stochastic variability, especially with regard to the summer
period, which is overall characterized by a small number of cases.

Because of the increase in the number of infections, on 16 August 2020, the Minister of Health
Roberto Speranza signed an ordinance ordering the closure of discos and dance halls and making
it compulsory, from 6 p.m. to 6 a.m., to wear masks even in public spaces. In September, with
the start of the new school year, classroom activities resumed. To reduce the risk of infection,
school staff were allowed to undergo serological testing. Finally, during the second wave (October-
November 2020) an Rt index above 1.5 is recorded for most of October, falling below 1 from mid-
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November until the end of December. As of 20 December 2020, a total of 622,760 people tested
positive for Covid-19, with 68,799 deaths and 1,261,626 patients discharged/healed, nationwide.

4. Empirical Analysis

In this section, we conduct several empirical studies to compare the in-sample and out-of-sample
performance of the HAR with the commonly used ARMA models. The data employed for
the empirical analysis consist of the daily Covid-19 positivity rate recorded in Italy between 24
February and 20 December 2020, with a full-sample period of 301 days.

Regarding the Flexible-HAR (FHAR) based on the adaptive lasso, following Audrino et al.
(2019), the maximum lag order is setted to p = 50, while the tuning parameter λ is chosen by
five-fold cross-validation 8. The weights λi in the adaptive lasso are calibrated as the inverse of
the absolute value of the corresponding preliminary ridge regression estimator (Audrino et al.,
2019).

We also estimate a Flexible-HAR based on the lasso method to select appropriate HAR lag
length, resulting in the Lasso-HAR (LHAR) model. All the lasso estimates are obtained using the
glmnet package (Friedman et al., 2010).

For the purpose of comparing the in-sample and out-of-sample performance of the analyzed
models, we consider the following loss functions (Patton, 2011):

MSE = T−1
T∑
t=1

(xt − x̂t)2 MAE = T−1
T∑
t=1

|xt − x̂t|

MSElog = T−1
T∑
t=1

(log(xt)− log(x̂t))
2 MAElog = T−1

T∑
t=1

|log(xt)− log(x̂t)|

MSEsd = T−1
T∑
t=1

(√
xt −

√
x̂t

)2
MAEsd = T−1

T∑
t=1

∣∣∣√xt −√x̂t∣∣∣
MSEprop = T−1

T∑
t=1

(
xt
x̂t
− 1

)2

MAEprop = T−1
T∑
t=1

∣∣∣∣xtx̂t − 1

∣∣∣∣
QLIKE = T−1

T∑
t=1

(
log(x̂t) +

xt
x̂t

)

where xt is the PPRt and x̂t is the prediction obtained by the HAR-type or ARIMA-type models.
In addition, we further assess the significance of differences in forecasting performance of all

competing models by means of the MCS (Hansen et al., 2011). The MCS relies on a sequence
of statistical tests to identify, at a certain confidence level (1 − α), the set of superior models
with respect to some appropriately-chosen measures of predictive ability. The MCS p-values are
obtained by 5,000 bootstrap resamples generated by a block-bootstrap procedure, estimating the
optimal block length through the method described in Patton et al. (2009).

8Our findings are robust to alternative choices of p.
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4.1. In-sample results
Table 2 shows the results of the model comparison in terms of in-sample accuracy. In particular,
we compare 15 ARIMA specifications with the HAR based on different lag structures, together
with LHAR and FHAR. To determine whether differencing in the PPR series is required, we use
the Augmented Dickey-Fuller (ADF) test, suggesting that one difference is needed to make the
data stationary. This leads to using ARIMA(p,1,q) specifications9.

Table 2: In-sample model comparison.

MAE MAEsd MAElog MAEprop MSE MSEsd MSElog MSEprop QLIKE

ARIMA(1,1,0) 0.5317 0.1336 0.1953 0.1931 0.6574 0.0282 0.0691 0.0694 1.8096
ARIMA(2,1,0) 0.5357 0.1324 0.1882 0.1863 0.6979 0.0287 0.0631 0.0627 1.8068
ARIMA(3,1,0) 0.5505 0.1350 0.1889 0.1889 0.7837 0.0315 0.0647 0.0679 1.8081
ARIMA(0,1,1) 0.5263 0.1296 0.1827 0.1807 0.6878 0.0283 0.0609 0.0608 1.8058
ARIMA(0,1,2) 0.5589 0.1367 0.1915 0.1912 0.7891 0.0314 0.0640 0.0664 1.8077
ARIMA(0,1,3) 0.5716 0.1393 0.1946 0.1976 0.8328 0.0328 0.0654 0.0740 1.8093
ARIMA(1,1,1) 0.5413 0.1330 0.1872 0.1856 0.7296 0.0295 0.0620 0.0626 1.8065
ARIMA(1,1,2) 0.5252 0.1301 0.1851 0.1883 0.6919 0.0283 0.0603 0.0685 1.8068
ARIMA(1,1,3) 0.5284 0.1307 0.1857 0.1891 0.7011 0.0286 0.0607 0.0694 1.8070
ARIMA(2,1,1) 0.5428 0.1331 0.1869 0.1857 0.7400 0.0298 0.0617 0.0629 1.8064
ARIMA(2,1,2) 0.4708 0.1169 0.1691 0.1747 0.5997 0.0244 0.0556 0.0672 1.8049
ARIMA(2,1,3) 0.4698 0.1185 0.1745 0.1810 0.5776 0.0242 0.0581 0.0727 1.8064
ARIMA(3,1,1) 0.5478 0.1347 0.1889 0.1889 0.7727 0.0312 0.0649 0.0684 1.8082
ARIMA(3,1,2) 0.5437 0.1366 0.1978 0.1982 0.7413 0.0312 0.0736 0.0788 1.8123
ARIMA(3,1,3) 0.4673 0.1177 0.1729 0.1790 0.5736 0.0240 0.0575 0.0715 1.8060
HAR(1,7,14) 0.4593 0.1222 0.1872 0.1674 0.4711 0.0240 0.0743 0.0504 1.8081
HAR(1,7,21) 0.4674 0.1300 0.2076 0.1798 0.4796 0.0264 0.0900 0.0561 1.8139
HAR(1,7,28) 0.4835 0.1320 0.2073 0.1799 0.5079 0.0274 0.0909 0.0562 1.8141
HAR(1,7,14,21) 0.5008 0.1413 0.2276 0.1933 0.5285 0.0303 0.1060 0.0628 1.8199
HAR(1,7,14,28) 0.4539 0.1209 0.1852 0.1665 0.4567 0.0232 0.0718 0.0498 1.8072
HAR(1,7,14,21,28) 0.4432 0.1157 0.1731 0.1589 0.4572 0.0223 0.0641 0.0485 1.8046
LHAR(1,7,19,25) 0.4255 0.1118 0.1693 0.1563 0.4460 0.0218 0.0645 0.0490 1.8048
FHAR(1,7,27) 0.4410 0.1149 0.1726 0.1590 0.4796 0.0231 0.0675 0.0509 1.8059

The table reports the average values of the different loss functions for the models under analysis. The lowest value of
the loss in each column is displayed in bold. The sample runs from 24 February 2020 to 20 December 2020. Note that
for LHAR and FHAR the lags are not imposed, but the selected lag structure allowed by the lasso and adaptive lasso
methods is reported, respectively.

The empirical results in Table 2 highlight that the selected lag structure by the adaptive lasso
for the FHAR is (1,7,27), which is in line with the canonical daily-weekly-monthly lag structure
of the standard HAR model, while the lasso suggests using an additional biweekly/triweekly

9The values of p and q chosen by minimizing the Corrected Akaike’s Information Criterion (AICc) are p = 3 and
q = 3. However, in our analysis, we consider multiple ARMA specifications because, for example, a model that fits
in-sample data well will not necessarily provide good out-of-sample forecasts.
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Figure 4: Actual vs estimated positivity rate
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Comparison of actual (black) and in-sample prediction of the Lasso-HAR (red) and of ARIMA(2,1,2) (green) for the
daily positivity rate of Italy.

lag for the LHAR, i.e. (1,7,19,25). It is worth noting that in seven out of nine cases the loss
functions considered are minimized by HAR-type models. In particular, the LHAR minimizes
MAE, MAEsd, MAEprop, MSE, MSEsd whereas the HAR(1,7,14,21,28) minimizes MSEprop and
QLIKE. Finally, the ARIMA(2,1,2) is the specification that minimizesMAElog andMSElog (even
though for MAElog the LHAR returns a very similar result).

In Figure 4, we plot the actual (black line) and the estimated daily PPR given by the LHAR
model (red line) and ARIMA(2,1,2) model (green line). It can easily be seen that while the LHAR
better follows the dynamics of the percentage positive rate in both low and high infection periods,
the ARIMA(2,1,2), being smoother, is not able to fully capture all variations and peaks in the actual
PPR, especially in periods characterized by a high viral spread rate. These considerations remain
essentially valid also for the other HAR and ARIMA specifications, which have not been shown
for ease of interpretation.

4.2. Out-of-sample results
To investigate the predictive ability of the models, we conduct an h-step-ahead rolling window
study at the forecasting horizons h = 1, h = 3 and h = 7. The forecasts are obtained by re-
estimating the model parameters at each step with a rolling window of 200 observations (2/3
of the sample). To compare the forecasting performances, we consider the set of loss function
specified in Section 4, while to assess the significance of differences of the competing models we
refer to the MCS relying on the semi-quadratic statistic and the confidence levels of 75% and
90%10.

10We report results only for the semi-quadratic statistic because the results corresponding to the range statistic remain
substantially stable.
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Table 3: Out-of-sample model comparison for Italy: forecast horizon h = 1

MAE MAEsd MAElog MAEprop MSE MSEsd MSElog MSEprop QLIKE

ARIMA(1,1,0) 0.7483 0.1335 0.1116 0.1136 0.9387 0.0268 0.0213 0.0226 2.9366
ARIMA(2,1,0) 0.7177 0.1284 0.1078 0.1107 0.8721 0.0250 0.0201 0.0221 2.9361
ARIMA(3,1,0) 0.7192 0.1290 0.1089 0.1126 0.8639 0.0249 0.0202 0.0230 2.9363
ARIMA(0,1,1) 0.7336 0.1285 0.1044 0.1074 0.9261 0.0253 0.0181 0.0202 2.9352
ARIMA(0,1,2) 0.7203 0.1276 0.1056 0.1089 0.8815 0.0248 0.0189 0.0214 2.9356
ARIMA(0,1,3) 0.7263 0.1299 0.1090 0.1127 0.8815 0.0252 0.0200 0.0228 2.9362
ARIMA(1,1,1) 0.7412 0.1319 0.1099 0.1136 0.9170 0.0260 0.0205 0.0234 2.9365
ARIMA(1,1,2) 0.7136 0.1277 0.1074 0.1106 0.8664 0.0247 0.0196 0.0221 2.9359
ARIMA(1,1,3) 0.6970 0.1272 0.1094 0.1142 0.7597 0.0233 0.0202 0.0236 2.9364
ARIMA(2,1,1) 0.7020 0.1255 0.1052 0.1084 0.8392 0.0241 0.0192 0.0215 2.9357
ARIMA(2,1,2) 0.6791 0.1279 0.1181 0.1428 0.7415 0.0270 0.0420 0.1564 2.9566
ARIMA(2,1,3) 0.5881 0.1063 0.0900 0.0940 0.6132 0.0186 0.0156 0.0187 2.9340
ARIMA(3,1,1) 0.7059 0.1261 0.1058 0.1091 0.8703 0.0246 0.0192 0.0218 2.9358
ARIMA(3,1,2) 0.6278 0.1127 0.0951 0.0983 0.6987 0.0205 0.0168 0.0191 2.9345
ARIMA(3,1,3) 0.6696 0.1234 0.1115 0.1352 0.7339 0.0257 0.0393 0.1471 2.9548
HAR(1,7,14) 0.6311 0.1144 0.0981 0.1063 0.6375 0.0205 0.0191 0.0257 2.9363
HAR(1,7,21) 0.6392 0.1144 0.0965 0.1039 0.6699 0.0204 0.0178 0.0233 2.9355
HAR(1,7,28) 0.6480 0.1157 0.0978 0.1049 0.6863 0.0202 0.0174 0.0225 2.9353
HAR(1,7,14,21) 0.6026 0.1091 0.0934 0.1002 0.5786 0.0187 0.0175 0.0230 2.9353
HAR(1,7,14,28) 0.5932 0.1081 0.0940 0.1002 0.5619 0.0180 0.0171 0.0220 2.9351
HAR(1,7,14,21,28) 0.5849 0.1063 0.0921 0.0977 0.5326 0.0170 0.0162 0.0207 2.9346
LHAR 0.5681 0.0955 0.0755 0.0763 0.6324 0.0148 0.0095 0.0101 2.9307
FHAR 0.6006 0.1002 0.0776 0.0789 0.7267 0.0171 0.0105 0.0112 2.9312

The table reports the average values of the different loss functions for the models under analysis. Bold numbers
indicate the best performing model by each criterion at the forecast horizon h = 1. The numbers shaded in gray and
light-gray denote that the corresponding models are included in the 75% and 90% MCS, respectively. We use a rolling
window of 200 observations to estimate the coefficients of the models at each step.

We first consider the case of one-day-ahead PPR forecasts (h = 1), showing the results
in Table 3. Overall, HAR-type models provide significantly better performance than ARIMA
models. The lowest loss values are always returned by the LHAR with the single exception of the
MSE minimized by the HAR(1,7,14,21,28). The superiority of the HAR models is also confirmed
by the MCS as the only ARIMAs falling in the 75% MCS are the ARIMA(2,1,3) for MAE and
MAEsd and the ARIMA(3,1,2) for MAE. Some other ARIMA specifications of order (p, q) ≥ 2 are
included in the less restrictive 90% MCS in a few isolated cases. On the other hand, the LHAR and
FHAR are the only models always entering the set of superior models for all the forecast criteria
considered.

For the remaining forecast horizons, ARIMA models perform poorly in general. Table 4
and Table 5 report the forecast performance of all considered models for h = 3 and h = 7
periods ahead, respectively. It can easily be seen that the superiority of the HAR models remains
unchanged over longer forecast horizons. Among the seven HAR-type models, the LHAR shows
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Table 4: Out-of-sample model comparison for Italy: forecast horizon h = 3

MAE MAEsd MAElog MAEprop MSE MSEsd MSElog MSEprop QLIKE

ARIMA(1,1,0) 0.8582 0.1506 0.1231 0.1280 1.2388 0.0331 0.0228 0.0253 2.9234
ARIMA(2,1,0) 0.8329 0.1464 0.1197 0.1247 1.1604 0.0315 0.0221 0.0249 2.9231
ARIMA(3,1,0) 0.8301 0.1450 0.1177 0.1226 1.1544 0.0308 0.0210 0.0238 2.9226
ARIMA(0,1,1) 0.8420 0.1450 0.1148 0.1204 1.2400 0.0325 0.0207 0.0238 2.9225
ARIMA(0,1,2) 0.8223 0.1437 0.1164 0.1215 1.1453 0.0309 0.0211 0.0240 2.9226
ARIMA(0,1,3) 0.8361 0.1465 0.1190 0.1243 1.1734 0.0318 0.0219 0.0250 2.9231
ARIMA(1,1,1) 0.8375 0.1455 0.1169 0.1220 1.2006 0.0320 0.0214 0.0242 2.9228
ARIMA(1,1,2) 0.8257 0.1459 0.1198 0.1240 1.1535 0.0315 0.0220 0.0247 2.9230
ARIMA(1,1,3) 0.7875 0.1404 0.1159 0.1214 0.9991 0.0285 0.0206 0.0238 2.9224
ARIMA(2,1,1) 0.8085 0.1416 0.1151 0.1196 1.0867 0.0294 0.0205 0.0231 2.9223
ARIMA(2,1,2) 0.8370 0.1471 0.1202 0.1249 1.1488 0.0312 0.0218 0.0245 2.9229
ARIMA(2,1,3) 0.8294 0.1419 0.1119 0.1158 1.1731 0.0301 0.0196 0.0220 2.9218
ARIMA(3,1,1) 0.8314 0.1451 0.1178 0.1218 1.2191 0.0319 0.0216 0.0242 2.9228
ARIMA(3,1,2) 0.7975 0.1387 0.1131 0.1173 1.0853 0.0282 0.0203 0.0232 2.9222
ARIMA(3,1,3) 0.8148 0.1404 0.1123 0.1161 1.1414 0.0299 0.0206 0.0234 2.9224
HAR(1,7,14) 0.6210 0.1168 0.1052 0.1152 0.6091 0.0203 0.0202 0.0265 2.9227
HAR(1,7,21) 0.6635 0.1204 0.1042 0.1129 0.7229 0.0213 0.0185 0.0233 2.9216
HAR(1,7,28) 0.7076 0.1259 0.1064 0.1144 0.7999 0.0221 0.0175 0.0213 2.9210
HAR(1,7,14,21) 0.5718 0.1068 0.0957 0.1030 0.4940 0.0167 0.0167 0.0211 2.9207
HAR(1,7,14,28) 0.5628 0.1037 0.0916 0.0975 0.4868 0.0155 0.0146 0.0177 2.9194
HAR(1,7,14,21,28) 0.5510 0.1002 0.0873 0.0924 0.4641 0.0142 0.0131 0.0157 2.9186
LHAR 0.5274 0.0851 0.0639 0.0645 0.6050 0.0130 0.0071 0.0075 2.9153
FHAR 0.5660 0.0941 0.0737 0.0757 0.6215 0.0139 0.0086 0.0095 2.9161

The table reports the average values of the different loss functions for the models under analysis. Bold numbers
indicate the best performing model by each criterion at the forecast horizon h = 3. The numbers shaded in gray and
light-gray denote that the corresponding models are included in the 75% and 90% MCS, respectively. We use a rolling
window of 200 observations to estimate the coefficients of the models at each step.

a dominant position for predicting the PPR at h = 3 since it minimizes the loss functions in eight
out of nine cases and it is the only model that always enters 75% MCS (Table 4). At the same time,
the FHAR provides better forecast accuracy at a weekly (h = 7) horizon, achieving the lowest
losses for all criteria used and being the only model permanently included in 75% MCS (Table 5).

Summarizing, the out-of-sample results clearly show that HAR-type specifications
outperform ARIMA models in predicting the positivity rate at the considered forecast horizons
h = 1, h = 3 and h = 7. Also, it should be noted that, overall, both Lasso-HAR and Flexible-HAR,
taking into account uncertainty in model specification, outperform the standard HAR based on a
fixed lag index at each forecast horizon and by each criterion. Therefore, the above results suggest
that allowing a more general specification of HAR is successful probably because the lasso-based
models include only active predictors, letting the lag structure approximate the long memory
observed in the data.
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Table 5: Out-of-sample model comparison for Italy: forecast horizon h = 7

MAE MAEsd MAElog MAEprop MSE MSEsd MSElog MSEprop QLIKE

ARIMA(1,1,0) 0.9970 0.1770 0.1433 0.1590 1.8202 0.0526 0.0350 0.0473 2.9011
ARIMA(2,1,0) 0.9801 0.1738 0.1404 0.1561 1.7838 0.0517 0.0342 0.0464 2.9006
ARIMA(3,1,0) 0.9523 0.1687 0.1360 0.1512 1.7092 0.0497 0.0328 0.0447 2.8999
ARIMA(0,1,1) 0.9943 0.1749 0.1392 0.1554 1.8495 0.0532 0.0344 0.0470 2.9008
ARIMA(0,1,2) 0.9706 0.1712 0.1371 0.1529 1.7725 0.0514 0.0337 0.0462 2.9004
ARIMA(0,1,3) 0.9649 0.1707 0.1371 0.1530 1.7539 0.0513 0.0339 0.0465 2.9005
ARIMA(1,1,1) 0.9783 0.1725 0.1379 0.1538 1.8020 0.0519 0.0339 0.0462 2.9005
ARIMA(1,1,2) 0.9284 0.1626 0.1310 0.1434 1.6679 0.0461 0.0311 0.0414 2.8988
ARIMA(1,1,3) 1.0900 0.1884 0.1471 0.1634 2.0626 0.0575 0.0361 0.0490 2.9017
ARIMA(2,1,1) 0.9096 0.1602 0.1290 0.1420 1.5421 0.0443 0.0297 0.0397 2.8981
ARIMA(2,1,2) 0.9830 0.1742 0.1405 0.1560 1.7774 0.0521 0.0350 0.0481 2.9011
ARIMA(2,1,3) 0.8779 0.1567 0.1295 0.1425 1.4197 0.0417 0.0302 0.0403 2.8983
ARIMA(3,1,1) 0.9871 0.1679 0.1325 0.1446 1.8515 0.0479 0.0313 0.0419 2.8989
ARIMA(3,1,2) 0.8999 0.1564 0.1279 0.1377 1.4222 0.0376 0.0276 0.0359 2.8967
ARIMA(3,1,3) 0.9989 0.1684 0.1328 0.1401 1.7923 0.0441 0.0294 0.0352 2.8972
HAR(1,7,14) 0.7186 0.1402 0.1335 0.1486 0.8704 0.0290 0.0295 0.0386 2.8979
HAR(1,7,21) 0.7906 0.1479 0.1341 0.1474 1.0414 0.0308 0.0271 0.0343 2.8964
HAR(1,7,28) 0.8304 0.1511 0.1324 0.1454 1.1411 0.0324 0.0268 0.0342 2.8963
HAR(1,7,14,21) 0.6713 0.1290 0.1206 0.1316 0.6812 0.0229 0.0234 0.0296 2.8944
HAR(1,7,14,28) 0.6569 0.1234 0.1129 0.1228 0.6609 0.0217 0.0221 0.0284 2.8937
HAR(1,7,14,21,28) 0.6600 0.1221 0.1105 0.1195 0.6579 0.0208 0.0210 0.0266 2.8931
LHAR 0.5815 0.0925 0.0677 0.0697 0.7312 0.0162 0.0096 0.0111 2.8868
FHAR 0.5156 0.0848 0.0647 0.0671 0.5763 0.0138 0.0090 0.0106 2.8865

The table reports the average values of the different loss functions for the models under analysis. Bold numbers
indicate the best performing model by each criterion at the forecast horizon h = 7. The numbers shaded in gray and
light-gray denote that the corresponding models are included in the 75% and 90% MCS, respectively. We use a rolling
window of 200 observations to estimate the coefficients of the models at each step.

4.3. Robustness check: out-of-sample results for the United States
We investigate the robustness of the proposed approach by considering the evolution of PPR for
the United States (US). The 2019 coronavirus pandemic has led to massive social upheaval around
the world and in the US. As mentioned above, the first outbreak of the virus occurred in the city
of Wuhan in China’s Hubei province in December 2019, but the virus then spread to Asia, Europe
and North America between January and March 2020. By the end of March, there were more
than 700,000 confirmed cases of Covid-19 worldwide and more than 34,000 people had died from
causes related to the virus, with the US reaching more confirmed cases than any other country,
surpassing China and Italy with more than 86,000 positive tests (Johns Hopkins University, 2020).

The data to conduct our analysis on the PPR for the US were downloaded from the Our World
in Data website11 by Roser et al. (2020). Since data on testing are not available for the early

11https://ourworldindata.org/coronavirus
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phase of the pandemic the sample period goes from 01 March to 20 December 2020. As with the
Italian PPR, forecasts are obtained by recursively estimating model parameters every day over
a 200-day rolling window. Accordingly, the out-of-sample period runs from 16 September to 20
December 2020. However, in order to improve the overall presentation of the paper, the tables
with the forecasting results have been reported in the Appendix, while we will discuss only the
main findings here. Considering the forecasting horizons h = 1, h = 3 and h = 7, the results
for the US confirm what was found for Italy. In particular, it turns out that LHAR and FHAR
are the only models that consistently enter the MCS regardless of the chosen forecast horizon,
always minimizing each of the nine loss functions considered. For h = 1 and h = 3 no other
models are included in the MCS, while for h = 7 some HAR specifications with fixed lag index
enter the set of superior models but only for MAE-type loss functions. Overall, for short forecast
horizons, ARMA-type and HAR-type models with fixed-based lag structure tend to have similar
performance, but for longer forecast horizons HAR specifications prevail. On the other hand,
the lasso-based HAR specifications outperform competing models in each forecasting scenario,
capturing both short- and long-run PPR dynamics.

5. Discussion

As discussed above, Covid-19 is an infection characterized by a high percentage of asymptomatic
cases. Several studies have shown that more than 40% of cases may not reveal symptoms. This
means that no country knows the true total number of people affected by Covid-19, but all we
know is the infection status of who has been tested. As a result, testing is a crucial element
in understanding the spread of the ongoing pandemic (Hasell et al., 2020). Better than simply
counting the total number of tests and in conjunction with data on confirmed cases, the positivity
rate represents a key metric for understanding the pandemic, as it measures both the severity
of the epidemic and the limitations of testing. According to WHO, before a country can loosen
restrictions or begin reopening, the positivity rate for a comprehensive testing program should be
5% or less for at least 14 days.

High rates of positivity occur when, for example, the only people being tested are patients
with more severe clinical symptoms who are suspected of having Covid-19 and have required
hospitalization. Consequently, a high PPR means that countries should probably aim for a larger
and more comprehensive testing program, suggesting that it is not a reasonable time to relax
restrictions designed to reduce coronavirus transmission. At the same time, because a high
positive rate suggests high rates of infection in the community caused by rapid transmission of
the virus, this indicates that it may be useful to impose restrictions to slow the spread of the
disease. Achieving a low test positivity rate may be the result of a large enough testing volume
such that asymptomatic and mild cases as well as exposed contacts are monitored, even if they
are asymptomatic. On the other hand, low positivity rates can be the result of enacting different
types of public health interventions such as encouraging smart working, closing schools, banning
mass gatherings, restrictions on eating in public places along with permissive to total lockdown
home stay measures.

Such a situation requires the parallel development of at least two dimensions: on the one
hand, policymakers should plan ahead for needs in terms of medical facilities and equipment,
while, on the other hand, analytical tools and models allowing the generation of reliable forecasts
and future scenarios should be developed. For example, analyzing the data in Figure 5, which
shows the time series of the nomalized 7-day moving average of PPR and patients in Intensive
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Figure 5: Positivity rate vs hospitalized ICU patients
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Comparison of 7-day moving average of positivity rate in black and hospitalized patients in intensive care units (ICU)
in red for Italy. For ease of comparison, variables were normalized to have a scale between 0 and 1.

Care Unit (ICU) for Italy, it turns out that the peak of patients in ICU occurs between 12 and 16
days after the peak of PPR. Similar scenarios also arise at the regional level. (Fenga and Gaspari,
2021). In this perspective, the approach proposed in this paper could help decision makers to
plan public health policies in advance because the PPR could have a predictive capacity with
respect to hospitalizations, changing the level of intensity of these interventions over the course
of the epidemic. In addition, the ability of HAR to reproduce the short- and medium/long-term
trend of the positivity rate could avoid both the immediate economic costs of lockdown and the
societal costs of social distancing measures. For example, a long-term upward prediction of the
PPR, could lead to a testing strategy on a larger population scale to monitor and reduce viral
transmission. This will inevitably also have repercussions on the social networks of the various
actors in the supply chain.

6. Conclusion

Understanding the dynamics of the current epidemic is essential for the development of non-
pharmaceutical interventions and thus for reducing the health, economic and social impacts
caused by the pandemic. This paper focuses on the positivity rate as it represents a crucial metric
for understanding the Covid-19 outbreak. The positivity rate offers a measure of how adequately
countries are testing and provides insight on the current level of coronavirus transmission in the
community. Since ARMA models have been found to be poorly suited to model the long-term
behavior of time series, in this paper, we propose to use the HAR approach to model the slowly-
moving long-run level and the highly persistent autocorrelation structure that characterize the
Covid-19 positivity rate.
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The empirical study of the Italian positivity rate, along with robustness checks on the US
data, shows that HAR models generally outperform ARIMA specifications under various criteria
and forecast horizons. The forecasting superiority of the HAR emerges from the MCS where the
standard HAR and its lasso-based alternatives significantly outperform ARIMA models under
the forecast horizons h = 1, h = 3 and h = 7. In particular, the gains widen as the forecast
horizon increases. Also, the out-of-sample results point out that the more general HAR lasso-
based lag structure is preferable compared with the HAR fixed-based lag structure. These results
are confirmed by the in-sample analysis, as allowing for model specification uncertainty under
the HAR framework leads to improvements in model fitting, minimizing the loss functions
considered.

Thus, this approach is particularly useful as it allows for accurately forecasting short-,
medium-, and long-term trends of the positivity rate. In this regard, monitoring the trend in
positivity rate and ICU admissions suggests that the PPR might have predictive ability with
respect to hospitalizations because peaks in positivity rate precede peaks in hospitalizations,
which occur on average within an interval of 12 to 16 days later. Generating accurate forecasts
at different horizons of the PPR is relevant for reducing uncertainty around interventions,
leading to maximize resource and investment allocations. Therefore, understanding the trend
in Covid-19 positivity rates would allow governments to modify their social and health policies
in advance. Also, since the model components are chosen in a completely data-driven fashion,
this significantly reduces the uncertainty and arbitrariness associated with model specification.
In this respect, lasso-based HAR-type models simplify the decision-making process by leading it
towards a common direction driven by the dynamics of the data.

However, it is worth noting that policy decisions should not only be determined by the
positivity rate, but also by other health, economic, demographic, environmental, and climate
variables. This is because the positivity rate provides some useful information about testing
capacity and the spread of the virus in the community, but it can also depend on factors such
as how it is calculated, the testing accessibility and the timeliness of the laboratory in providing
results. Of course, no single metric gives us a complete picture of the prevalence of Covid-19 in
the community. Therefore, each week, we need to monitor PPR trends along with other metrics
such as recovered and active cases, percent change in new cases, hospitalizations and deaths.

In the United States, there are no federal standards for reporting Covid-19 test data. It makes
impossible to offer a single view of testing data at the national level and consequently test data
are reported differently. In addition, there are several possible ways to calculate test positivity.
For example, on the Johns Hopkins University & Medicine webpage Differences in Positivity Rates
four possible ways to calculate positivity rates are outlined.

Regarding Italy, the Italian Civil Protection provides comprehensive data at the regional level
on some variables of interest such as swabs analyzed, cumulative confirmed cases, home isolation
cases, hospitalized cases, ICU cases, and deaths. However, regionalization of the health care
system and data fragmentation pose challenges in the management of the Covid-19 outbreak in
Italy. This has led to the enactment of several regional policies, especially in terms of testing
strategies. Consequently, in order to trace the real extension of Covid-19 infection, official data
must be interpreted with caution considering several aspects. For example, because there are
some inconsistencies and delays in the transmission of this data, on some days negative values
of positive cases, tests, and deaths are reported. In addition, short-term fluctuations could affect
the reliability of daily data. These fluctuations may be the result of laboratory delays (laboratory
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saturation) or calendar effects (typically, the number of tests tends to decrease on weekends).
Thus, these inconsistencies should be considered to account for data variability. In this direction,
in addition to official national bulletins, it might be useful to cross-reference information from
different data sources.

Currently, a complete picture of the drivers of Covid-19 spread that clarifies the causes of the
variability in infections across provinces and regions within countries is still lacking. Although
human-to-human transmission is recognized as the primary vehicle for virus transmission,
several studies have argued that virus circulation may also be associated with geographical,
environmental, and socio-economic factors. Accordingly, using information on these factors
could allow the definition and refinement of epidemiological modelling and thus the design of
appropriate policy responses to manage this threat to population health and, more generally,
to socio-economic systems. In this perspective, the proposed approach could be improved by
including health, environmental, and socio-economic variables in the HAR models.

Along these lines, as a direction for future research, it could be useful to investigate, and
potentially include in HAR models, the relationships between positivity rate and epidemiological
variables (effective reproductive number Rt); demographic parameters (social interactions, age,
and sex); environmental and climatic factors (humidity, wind speed, and temperature); pollution
indicators (air quality); and socio-economic activities (economic and social interactions within and
between countries). At the same time, it might be appropriate to consider data inconsistencies.
Considering these variables when generating forecasts could provide decision makers with better
guidance in establishing additional control measures, loosening restrictions, enhancing benefits,
and preventing the failure of measures already taken.
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AppendixA. Out-of-sample results for the United States

Table A.1: Out-of-sample model comparison for United States: forecast horizon h = 1

MAE MAEsd MAElog MAEprop MSE MSEsd MSElog MSEprop QLIKE

ARIMA(1,1,0) 1.0553 0.1906 0.1432 0.1453 1.9594 0.0597 0.0333 0.0362 2.9967
ARIMA(2,1,0) 1.0415 0.1870 0.1394 0.1428 1.9562 0.0595 0.0330 0.0372 2.9968
ARIMA(3,1,0) 0.9598 0.1735 0.1303 0.1341 1.7499 0.0539 0.0305 0.0344 2.9956
ARIMA(0,1,1) 1.0284 0.1858 0.1395 0.1423 1.8471 0.0575 0.0330 0.0357 2.9966
ARIMA(0,1,2) 0.9287 0.1670 0.1245 0.1283 1.7151 0.0517 0.0282 0.0317 2.9944
ARIMA(0,1,3) 0.9273 0.1681 0.1265 0.1307 1.6695 0.0514 0.0290 0.0330 2.9948
ARIMA(1,1,1) 0.9415 0.1707 0.1284 0.1322 1.7033 0.0525 0.0296 0.0334 2.9951
ARIMA(1,1,2) 0.9324 0.1682 0.1258 0.1298 1.6920 0.0514 0.0284 0.0322 2.9945
ARIMA(1,1,3) 0.9212 0.1674 0.1264 0.1314 1.6168 0.0494 0.0277 0.0327 2.9944
ARIMA(2,1,1) 0.9217 0.1671 0.1258 0.1302 1.6718 0.0515 0.0291 0.0332 2.9949
ARIMA(2,1,2) 0.8477 0.1554 0.1184 0.1221 1.4082 0.0447 0.0260 0.0294 2.9933
ARIMA(2,1,3) 0.7434 0.1380 0.1066 0.1100 1.2843 0.0410 0.0243 0.0275 2.9924
ARIMA(3,1,1) 0.8437 0.1542 0.1171 0.1216 1.4783 0.0463 0.0267 0.0306 2.9937
ARIMA(3,1,2) 0.7659 0.1422 0.1097 0.1135 1.2933 0.0417 0.0248 0.0282 2.9927
ARIMA(3,1,3) 0.7232 0.1352 0.1052 0.1082 1.1834 0.0382 0.0230 0.0256 2.9917
HAR(1,7,14) 0.8247 0.1494 0.1126 0.1152 1.4253 0.0435 0.0244 0.0277 2.9925
HAR(1,7,21) 0.8187 0.1485 0.1121 0.1145 1.4267 0.0435 0.0244 0.0276 2.9925
HAR(1,7,28) 0.8181 0.1486 0.1122 0.1149 1.4355 0.0437 0.0246 0.0280 2.9926
HAR(1,7,14,21) 0.8153 0.1480 0.1116 0.1142 1.4322 0.0438 0.0247 0.0280 2.9926
HAR(1,7,14,28) 0.8134 0.1476 0.1114 0.1143 1.4247 0.0433 0.0243 0.0278 2.9924
HAR(1,7,14,21,28) 0.8069 0.1461 0.1100 0.1133 1.4092 0.0428 0.0239 0.0278 2.9923
LHAR 0.5638 0.1019 0.0767 0.0789 0.7843 0.0225 0.0119 0.0140 2.9861
FHAR 0.5723 0.1035 0.0779 0.0801 0.8314 0.0240 0.0126 0.0148 2.9865

The table reports the average values of the different loss functions for the models under analysis. Bold numbers
indicate the best performing model by each criterion at the forecast horizon h = 1. The numbers shaded in gray and
light-gray denote that the corresponding models are included in the 75% and 90% MCS, respectively. We use a rolling
window of 200 observations to estimate the coefficients of the models at each step.
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Table A.2: Out-of-sample model comparison for United States: forecast horizon h = 3

MAE MAEsd MAElog MAEprop MSE MSEsd MSElog MSEprop QLIKE

ARIMA(1,1,0) 1.3046 0.2393 0.1820 0.1867 2.4443 0.0790 0.0465 0.0496 3.0001
ARIMA(2,1,0) 1.2713 0.2336 0.1780 0.1837 2.2935 0.0742 0.0438 0.0485 2.9991
ARIMA(3,1,0) 1.1647 0.2164 0.1667 0.1727 1.9047 0.0644 0.0396 0.0440 2.9970
ARIMA(0,1,1) 1.2249 0.2244 0.1704 0.1748 2.1210 0.0683 0.0401 0.0431 2.9970
ARIMA(0,1,2) 0.9900 0.1838 0.1413 0.1475 1.5059 0.0502 0.0303 0.0343 2.9923
ARIMA(0,1,3) 0.9888 0.1850 0.1433 0.1500 1.5240 0.0518 0.0319 0.0362 2.9932
ARIMA(1,1,1) 1.0341 0.1923 0.1481 0.1540 1.6032 0.0538 0.0326 0.0363 2.9934
ARIMA(1,1,2) 0.9946 0.1851 0.1426 0.1491 1.5201 0.0510 0.0310 0.0351 2.9927
ARIMA(1,1,3) 0.9562 0.1782 0.1378 0.1446 1.4728 0.0499 0.0310 0.0360 2.9928
ARIMA(2,1,1) 0.9989 0.1882 0.1469 0.1537 1.5532 0.0539 0.0339 0.0384 2.9942
ARIMA(2,1,2) 1.0193 0.1922 0.1501 0.1566 1.5953 0.0557 0.0349 0.0399 2.9947
ARIMA(2,1,3) 0.8696 0.1661 0.1315 0.1358 1.2422 0.0449 0.0294 0.0321 2.9917
ARIMA(3,1,1) 0.9590 0.1810 0.1416 0.1483 1.4256 0.0501 0.0320 0.0363 2.9932
ARIMA(3,1,2) 0.9208 0.1755 0.1385 0.1439 1.2725 0.0467 0.0308 0.0344 2.9925
ARIMA(3,1,3) 0.8532 0.1635 0.1299 0.1335 1.1287 0.0419 0.0281 0.0305 2.9910
HAR(1,7,14) 0.7215 0.1322 0.1003 0.1028 0.8750 0.0280 0.0163 0.0179 2.9850
HAR(1,7,21) 0.7298 0.1340 0.1021 0.1042 0.8932 0.0287 0.0167 0.0182 2.9852
HAR(1,7,28) 0.7363 0.1351 0.1028 0.1051 0.9122 0.0290 0.0168 0.0184 2.9853
HAR(1,7,14,21) 0.7186 0.1317 0.1000 0.1025 0.8899 0.0284 0.0165 0.0181 2.9851
HAR(1,7,14,28) 0.7189 0.1315 0.0998 0.1023 0.8879 0.0280 0.0161 0.0178 2.9849
HAR(1,7,14,21,28) 0.7167 0.1313 0.0997 0.1024 0.8696 0.0275 0.0158 0.0176 2.9848
LHAR 0.4436 0.0813 0.0618 0.0634 0.4057 0.0126 0.0071 0.0078 2.9803
FHAR 0.4404 0.0808 0.0614 0.0629 0.4032 0.0126 0.0071 0.0077 2.9803

The table reports the average values of the different loss functions for the models under analysis. Bold numbers
indicate the best performing model by each criterion at the forecast horizon h = 3. The numbers shaded in gray and
light-gray denote that the corresponding models are included in the 75% and 90% MCS, respectively. We use a rolling
window of 200 observations to estimate the coefficients of the models at each step.

27

Jo
urn

al 
Pre-

pro
of



Table A.3: Out-of-sample model comparison for United States: forecast horizon h = 7

MAE MAEsd MAElog MAEprop MSE MSEsd MSElog MSEprop QLIKE

ARIMA(1,1,0) 0.9863 0.1846 0.1431 0.1519 1.4816 0.0500 0.0305 0.0359 2.9797
ARIMA(2,1,0) 0.8793 0.1626 0.1243 0.1315 1.2286 0.0397 0.0229 0.0268 2.9758
ARIMA(3,1,0) 0.7504 0.1413 0.1098 0.1160 0.8809 0.0301 0.0183 0.0212 2.9733
ARIMA(0,1,1) 0.8573 0.1591 0.1220 0.1292 1.1286 0.0374 0.0221 0.0259 2.9753
ARIMA(0,1,2) 0.7070 0.1315 0.1008 0.1068 0.7684 0.0256 0.0150 0.0175 2.9716
ARIMA(0,1,3) 0.7597 0.1411 0.1080 0.1146 0.8444 0.0281 0.0164 0.0191 2.9724
ARIMA(1,1,1) 0.7598 0.1418 0.1090 0.1163 0.8761 0.0296 0.0176 0.0209 2.9730
ARIMA(1,1,2) 0.7374 0.1369 0.1047 0.1111 0.8195 0.0272 0.0158 0.0184 2.9720
ARIMA(1,1,3) 0.8600 0.1650 0.1310 0.1403 1.0296 0.0382 0.0255 0.0305 2.9772
ARIMA(2,1,1) 0.7417 0.1388 0.1072 0.1136 0.8044 0.0273 0.0164 0.0189 2.9723
ARIMA(2,1,2) 0.7811 0.1444 0.1101 0.1161 0.9999 0.0324 0.0185 0.0215 2.9734
ARIMA(2,1,3) 0.8545 0.1576 0.1198 0.1275 1.1900 0.0387 0.0221 0.0266 2.9754
ARIMA(3,1,1) 0.7080 0.1330 0.1030 0.1089 0.7435 0.0254 0.0153 0.0176 2.9717
ARIMA(3,1,2) 0.8488 0.1551 0.1169 0.1238 1.1641 0.0363 0.0200 0.0237 2.9743
ARIMA(3,1,3) 0.8424 0.1558 0.1189 0.1270 1.1784 0.0386 0.0223 0.0270 2.9756
HAR(1,7,14) 0.4955 0.0920 0.0701 0.0728 0.4496 0.0144 0.0079 0.0090 2.9679
HAR(1,7,21) 0.5184 0.0957 0.0727 0.0751 0.4744 0.0149 0.0082 0.0091 2.9680
HAR(1,7,28) 0.5283 0.0970 0.0731 0.0756 0.4825 0.0150 0.0081 0.0091 2.9680
HAR(1,7,14,21) 0.5155 0.0951 0.0721 0.0749 0.4703 0.0147 0.0080 0.0090 2.9679
HAR(1,7,14,28) 0.5121 0.0939 0.0707 0.0732 0.4618 0.0143 0.0077 0.0086 2.9677
HAR(1,7,14,21,28) 0.5049 0.0928 0.0701 0.0725 0.4498 0.0139 0.0075 0.0084 2.9676
LHAR 0.4638 0.0848 0.0639 0.0655 0.3661 0.0114 0.0062 0.0068 2.9669
FHAR 0.4732 0.0866 0.0651 0.0669 0.3862 0.0120 0.0066 0.0071 2.9671

The table reports the average values of the different loss functions for the models under analysis. Bold numbers
indicate the best performing model by each criterion at the forecast horizon h = 7. The numbers shaded in gray and
light-gray denote that the corresponding models are included in the 75% and 90% MCS, respectively. We use a rolling
window of 200 observations to estimate the coefficients of the models at each step.
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Highlights 

 The Covid-19 pandemic is severely affecting public health and global economies. 

 We propose the HAR approach for fitting and forecasting the Covid-19 positivity rate. 

 HAR models outperform ARIMA in predicting positivity rates at different horizons. 

 Accurately predicting positivity rates helps in planning socio-economic strategies. 

 Our findings are supported by an empirical application to Italian and US data. 
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